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Chapter 5 

Step-by-Step Bacterial Genome Comparison 

Dennis Carhuaricra-Huaman and João Carlos Setuba 

Abstract 

Thanks to advancements in genome sequencing and bioinformatics, thousands of bacterial genome 
sequences are available in public databases. This presents an opportunity to study bacterial diversity in 
unprecedented detail. This chapter describes a complete bioinformatics workflow for comparative genomics 
of bacterial genomes, including genome annotation, pangenome reconstruction and visualization, phylo-
genetic analysis, and identification of sequences of interest such as antimicrobial-resistance genes, virulence 
factors, and phage sequences. The workflow uses state-of-the-art, open-source tools. The workflow is 
presented by means of a comparative analysis of Salmonella enterica serovar Typhimurium genomes. The 
workflow is based on Linux commands and scripts, and result visualization relies on the R environment. The 
chapter provides a step-by-step protocol that researchers with basic expertise in bioinformatics can easily 
follow to conduct investigations on their own genome datasets. 
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1 Introduction 

Bacterial genomics started in 1995 with the publication of the 
complete genome of Haemophilus influenzae, enabling a more 
profound comprehension of the organism’s biology [1]. Shortly 
after, the Mycoplasma genitalium genome was sequenced. The 
availability of these two genomes gave rise to comparative geno-
mics, revolutionizing prokaryotic biology [2]. Comparative geno-
mics includes many analyses, the most basic of which is the 
determination of which genes are present or absent in a particular 
genome with respect to others. Such information helps understand 
the genome evolution and the basis of phenotypic differences 
among related organisms. 

Early comparative studies already showed that large differences 
in gene content may occur between genomes of the same prokary-
otic species. When three Escherichia coli genomes became available 
in 2002, comparative analysis revealed that only 39.2% of the genes 
were shared by these three genomes [3]. Soon, other similar
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observations were made about other bacterial species, showing the 
remarkable plasticity of such genomes, eventually giving rise to the 
pangenome concept. The pangenome is the set of all non-redundant 
genes present in a given set of genomes. The differential gene 
content among genomes from the same species comes about 
because of extensive horizontal gene transfer (HGT) and gene 
loss, two of the main forces driving the evolution of prokaryotes [4].
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In the last 20 years, the development of cheaper and more 
accessible sequencing methods caused an exponential increase in 
the amount of bacterial genomes [5]. This, in turn, stimulated the 
development of genome informatics, or computational methods 
for genome analysis, in particular, comparative analysis. A few 
examples are the genomic epidemiology of pathogenic bacteria 
[6], pathogenesis and niche specialization [7], discovery of genes 
associated with virulence and antimicrobial resistance [8, 9], iden-
tification of antigens through reverse vaccinology [10], discovery of 
antiphage defense systems [11], among others. 

The use of massive sequencing and large genomic datasets may 
lead to important discoveries in various fields, such as medicine and 
plant pathology. However, frequently, there is a mismatch between 
the capability of obtaining large genomic datasets and the ability of 
effectively analyzing such data. Genome sequences are only useful if 
there are adequate capabilities for annotation and comparative 
analysis, including computational infrastructure and skilled scien-
tists in data analysis and programming. 

This chapter describes a step-by-step genomic comparison pro-
tocol, using the bacterium Salmonella enterica serovar Typhimur-
ium (S. Typhimurium) as an example. S. Typhimurium is one of the 
most important gastrointestinal pathogens of humans, and is car-
ried by livestock. In this chapter, we use genomes of S. Typhimur-
ium downloaded from a public database. 

The protocol presented in this study uses state-of-the-art bio-
informatics tools that are freely available. This protocol begins with 
genome annotation and pangenome reconstruction, followed by 
gene content analysis and visualization and phylogenetic recon-
struction. The protocol concludes with the identification of 
sequences of interest, including antimicrobial-resistance genes 
(ARGs), virulence genes, and phage sequences. The aim of this 
protocol is to provide a user-friendly guide that can be used as a 
template by researchers who are interested in applying the same 
analyses to their own genome datasets. 

2 Requirements and Assumptions 

This chapter assumes basic knowledge of Unix/Linux and R. All 
analyses can be run on a desktop computer running Linux/Unix or 
Mac OS. Most programs can be executed using bash shell com-
mands. We adopt the convention of presenting commands



executed on the Linux shell preceded by the “$” symbol and the 
label bash shell. We also present R code, which can be executed in 
the RStudio environment (https://posit.co/download/rstudio-
desktop/). R code sections are preceded by the label R script. 
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This protocol was tested on a desktop computer with 8 GB of 
RAM, processor Intel Core i7-6500U CPU 2.50 GHz, with 
200 GB of disk space, and running Linux (Ubuntu version 20.04 
system 64-bit). 

3 Datasets 

Bacterial genome sequences can be retrieved from a variety of 
public repositories; examples include GenBank [12], BIGSdb 
[13], IMG [14], BV-BRC [15], or Enterobase [16]. In this chap-
ter, we use genome sequences of Salmonella enterica ser. Typhi-
murium, which we abbreviate as SeT. Our dataset consists of 
12 genomes from strains LT2, 798, D23580, DT104, DT2, 
L-3553, SL1344, T000240, U288, SO4698-09, SO9207-07, 
and SO9304-02, which have been isolated from different hosts 
[17], and two SeT genomes isolated from guinea pigs 
(SMVET11 and SMVET22) sequenced by our group [18]. The 
accessions of these 14 SeT genomes are shown in Table 1 and can 
be downloaded from the GenBank genome database. Table 1 also

Table 1 
The genomes of S. Typhimurium used in this chapter. Each genome sequence can be downloaded 
from GenBank using the Assembly identifier in the last column 

Genome Host Country MLST Phylogroup Assembly 

798 Pig USA ST19 β GCA_000252875.1 

D23580 Human Africa ST313 β GCA_000027025.1 

DT104 Cattle NA ST19 α GCA_000493675.1 

DT2 Pigeon Germany ST128 β GCA_000493535.2 

L-3553 Cattle Japan ST19 β GCA_000828595.1 

LT2 Human USA ST19 α GCA_000006945.2 

SL1344 Cattle UK ST19 β GCA_000210855.2 

T000240 Human Japan ST19 α GCA_000283735.1 

U288 Pig UK ST19 α GCA_000380325.1 

SO4698-09 Cattle UK ST34 α GCA_001540845.1 

SO9207-07 Pig UK ST19 α GCA_903989485.1 

SO9304-02 Cattle UK ST19 β GCA_902500315.1 

SMVET11 Guinea Pig Peru ST19 α GCA_024721515.1 

SMVET22 Guinea Pig Peru ST19 α GCA_024721395.1

https://posit.co/download/rstudio-desktop/
https://posit.co/download/rstudio-desktop/


(continued)

contains additional information associated with each sample, such 
as host source, country, and genetic characteristics that were iden-
tified in the mentioned studies, such as the sequence type (ST), a 
method based on the allelic profile of seven housekeeping genes; 
and the phylogroup, which denotes a strain’s placement in the SeT 
phylogenetic tree, in clades α or β [17].
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4 Software 

The software tools that will be used in this workflow are freely 
available and summarized in Table 2, including links to the websites 
from which these can be downloaded and installed. 

Table 2 
List of software tools used to perform comparative genomics in this chapter 

Tool Description References Source 

ABRicate Genome screening for 
ARGs and VFs 

[19] https://github.com/tseemann/abricate 

Easyfig Genome sequence 
comparison 

[20] https://mjsull.github.io/Easyfig/ 

eggNOG-
mapper v.2 

Functional enrichment [21] https://github.com/eggnogdb/eggnog-
mapper 

GenBank Genome database [12] https://www.ncbi.nlm.nih.gov/genbank/ 

Gephi Network visualization [22] https://gephi.org/users/download/ 

ggplot2 R package [23] https://cran.r-project.org/web/packages/ 
ggplot2/ 

ggtree R package [24] https://github.com/YuLab-SMU/ggtree 

Gubbins Recombination [25] https://github.com/nickjcroucher/ 
gubbins 

IQ-TREE 2 Phylogeny [26] https://github.com/iqtree/iqtree2 

limma R package [27] https://bioconductor.org/packages/ 
release/bioc/html/limma.html 

micropan R package [28] https://github.com/larssnip/micropan 

Panaroo Pangenomic analysis [29] https://github.com/gtonkinhill/panaroo 

PPanGGOLiN Pangenome graph [30] https://github.com/labgem/ 
PPanGGOLiN 

pheatmap R package [31] https://github.com/cran/pheatmap 

Prokka Genome annotation [32] https://github.com/tseemann/prokka 

R Environment for analysis [33] https://www.r-project.org/

https://github.com/tseemann/abricate
https://mjsull.github.io/Easyfig/
https://github.com/eggnogdb/eggnog-mapper
https://github.com/eggnogdb/eggnog-mapper
https://www.ncbi.nlm.nih.gov/genbank/
https://gephi.org/users/download/
https://cran.r-project.org/web/packages/ggplot2/
https://cran.r-project.org/web/packages/ggplot2/
https://github.com/YuLab-SMU/ggtree
https://github.com/nickjcroucher/gubbins
https://github.com/nickjcroucher/gubbins
https://github.com/iqtree/iqtree2
https://bioconductor.org/packages/release/bioc/html/limma.html
https://bioconductor.org/packages/release/bioc/html/limma.html
https://github.com/larssnip/micropan
https://github.com/gtonkinhill/panaroo
https://github.com/labgem/PPanGGOLiN
https://github.com/labgem/PPanGGOLiN
https://github.com/cran/pheatmap
https://github.com/tseemann/prokka
https://www.r-project.org/
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(continued)

Tool Description References Source 

Scoary Pangenome-wide 
association studies 
analysis 

[34] https://github.com/AdmiralenOla/Scoary 

SNP-sites SNPs extraction for 
phylogenetic analysis 

[35] https://github.com/sanger-pathogens/ 
snp-sites 

VirSorter2 Phage sequence prediction [36] https://github.com/jiarong/VirSorter2 

5 Genome Annotation 

Genome annotation is the process whereby the location and func-
tional characteristics of genes and other genetic elements are added 
to the raw genome sequence. Nowadays, it is an automated process, 
with occasional manual curation in special cases and/or for partic-
ular genes. With more than a million prokaryotic genomes available 
in public databases, accurate automated genome annotation is 
crucial for many downstream genomic analyses [37]. Prokka [32] 
is the most cited command-line tool for prokaryote genome anno-
tation, with an easy installation and short runtime performance 
(5 min for a typical bacterial genome of about 5 Mbp). The Prokka 
pipeline uses Prodigal [38] to predict coding sequences (CDSs) and 
other software tools for RNA annotation. Bakta [39] was intro-
duced using a similar workflow but providing a more comprehen-
sive annotation. Bakta predicts pseudogenes and small proteins that 
are not annotated by Prokka. Both tools provide a variety of output 
files, such as .gff, .gbk, and .faa files, which are commonly used for 
comparative analysis. 

Here, we annotate all 14 genomes of our dataset with Prokka. 
We loop through all the genomes using the following command 
(which assumes that the FASTA files for all genomes are available in 
the directory from which the command is issued). 

Bash Shell 

$ for i in *.fasta; do prokka --kingdom Bacteria --genus Salmonella 

--prefix "${i%%.*}" --locustag "${i%%.*}" --outdir "${i%%.*}"

--compliant "$i"; done 

Here we are asking Prokka to annotate all assemblies in FASTA 
format (.fasta); name the output files (--prefix) and locus tag (--
locustag) as the isolate name; and make the annotations compliant 
with NCBI standards (--compliant).

https://github.com/AdmiralenOla/Scoary
https://github.com/sanger-pathogens/snp-sites
https://github.com/sanger-pathogens/snp-sites
https://github.com/jiarong/VirSorter2
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Table 3 
Annotation statistics of SeT genomes. In the last column, the number 
represents the total number of rRNA gene units that were detected (among 
three possible: 5S, 23S, 16S) 

Genome Size (bp) # CDS # tRNA # rRNA units 

798 4,970,096 4685 83 22 

D23580 4,879,400 4554 88 22 

DT104 5,027,665 4743 85 22 

DT2 4,814,801 4583 84 22 

L-3553 5,184,452 4925 85 22 

LT2 4,951,383 4620 86 22 

SL1344 5,067,450 4763 86 22 

T000240 5,069,994 4784 84 22 

U288 5,017,059 4707 85 22 

SO4698-09 5,037,238 4750 85 22 

SO9207-07 4,916,754 4585 88 22 

SO9304-02 5,045,986 4789 86 22 

SMVET11 4,851,410 4542 76 8 

SMVET22 5,095,938 4863 75 8 

For each genome annotated, a directory with the same name is 
created containing annotation files. Three output files (.gff, .gbk, 
and .faa) will be used for downstream analysis. Table 3 summarizes 
the annotation features of all 14 genomes. 

We now describe the tool eggNOG-mapper, which can map 
protein-coding genes, or coding sequences (CDSs), in a genome to 
the orthologous families in the eggNOG database [40]. eggNOG-
mapper offers functional annotation that includes KEGG pathways 
[41], COG functional categories [42], carbohydrate-active 
enzymes (CAZymes) families [43], and gene ontology terms 
[44]. Protein sequences (.faa file) generated by Prokka can be 
uploaded to the eggNOG-mapper website (http://eggnog-
mapper.embl.de/), which uses precomputed orthologous groups 
from the eggNOG database v.6 (http://eggnog6.embl.de) for fast 
functional annotation. eggNOG-mapper can also be installed 
locally, but the storage requirement is high due to database size 
(around 40 GB is needed for the eggNOG annotation databases 
and additional disk space if the HMMER option is used). 
eggNOGG-mapper can be executed locally with the following 
command.

http://eggnog-mapper.embl.de/
http://eggnog-mapper.embl.de/
http://eggnog6.embl.de
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Bash Shell 

$ for i in *.faa; do emapper.py -i "$i" --output "$i"_eggnog; done 

For each input, eggNOGG-mapper returns an annotation file 
(samplename.emapper.annotations) which provides the predictions 
for each query in TSV format (tab-separated values). Relevant 
columns are as follows: 

Query: The query sequence name 

GOs: List of predicted GO terms 

COG_category: List of predicted COG categories 

KEGG_ko: List of predicted KEGG orthologs 

CAZy: List of predicted CAZy orthologs 

6 Pangenome Reconstruction and Visualization 

The pangenome is the set of all gene families present in a given 
group of genomes belonging to a specific taxon [45]. The gene set 
can be subdivided into the “core” and “accessory” genomes. The 
core genome is composed of genes that are present in all members 
of the group, whereas those genes that are only present in some 
members represent the accessory genome [46]. This protein-
coding gene-based approach is the most common in prokaryotic 
pangenome reconstruction, and it requires a preliminary step of 
gene annotation to locate and extract the coding sequences. 
Depending on the program used to compute the pangenome, 
the categories “core” and “accessory” can be further subdivided 
(as will be the case in the example of this chapter, as discussed 
later). 

Before delving into the nuts and bolts of pangenome compu-
tation for the genome set we are using, it is worth citing the 
web-based tool PanExplorer [47], which provides a workflow for 
this computation, including visualization components. It is a useful 
and effective tool, which saves users from having to run individual 
programs to achieve the results illustrated here. 

6.1 Ortholog Gene 

Computation and 

Clustering 

Identifying orthologous genes in different genomes is the first step 
for pangenome reconstruction and gene content comparison. 
Orthologs can be identified by carrying out similarity searches 
between genes from different genomes using, for example, 
BLAST [48], CD-HIT [49], or DIAMOND [50], and then clus-
tering the results into orthologous groups using the Markov clus-
tering algorithm (MCL) or by looking at triangles of pairwise best 
hits [51, 52].
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Panaroo [29] is currently one of the most popular tools for 
pangenome reconstruction and is the tool we use in this example. 
Given a set of annotated genomes, in the form of .gff or .gbk files, 
Panaroo uses CD-HIT for sequence similarity search and clustering 
in order to obtain gene clusters with a high similarity threshold 
(98% by default). Some of these clusters are then merged according 
to synteny information, which is also used to find missing genes and 
correct for possible errors in assembly and annotation. 

In order to reconstruct the pangenome of our dataset of SeT 
genomes, the annotation files (.gff format) previously generated by 
Prokka are used as input to Panaroo. The basic command for 
pangenome calculation is as follows. 

Bash Shell 

$ panaroo -i *.gff -o results_SeT --clean-mode 
strict -a core --aligner mafft 

The parameter “aligner” indicates the program that Panaroo 
should use to perform multiple alignments of the genes in each 
cluster. In this case, we use the program MAFFT [53]. Panaroo will 
create a directory called “results_ST” containing a set of output 
files. The most important ones are as follows: 

summary_statistics.txt: A summary text file reports the number of 
genes discovered in the analyzed data, categorized into core, 
soft-core, shell, and cloud, based on their occurrence fre-
quency within the studied genomes. Soft-core, shell, and 
cloud genomes are concepts specific to Panaroo, and are a 
refinement of the accessory genome concept; their definitions 
are as follows. These categories can be represented in pie charts 
(Fig. 1a). 

pan_genome_reference.fa: A multi-fasta file that contains a unique 
representative nucleotide sequence extracted from each cluster 
present in the pangenome. 

gene_presence_absence.csv: This spreadsheet contains the description 
of each gene in the pangenome. 

gene_presence_absence.Rtab: A binary tab-separated matrix of pres-
ence/absence of each gene in the pangenome, the presence of a 
gene is coded as 1 and absence as 0. 

core_gene_alignment.aln: A file that contains an alignment of all 
core genes (by default, at least 95% of all samples). This can be 
used for phylogenetic analysis. 

After constructing the pangenome, all CDSs are now clustered 
into orthologous groups of genes (OGs). Hereinafter, OGs will be 
referred to simply as genes. Panaroo assigns genes to the core 
(present in at least 99% of genomes) or to the accessory genomes,



which is subdivided into the soft-core (95–99% of genomes), 
shell (15–95% of genomes), and cloud (less than 15% of gen-
omes). These statistical data of the pangenome can be repre-
sented in a pie chart and a histogram of gene frequencies. To 
generate these plots, we will use the binary tab-separated matrix 
of presence/absence (gene_presence_absence.Rtab) in the follow-
ing R script. 
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Fig. 1 (a) The pie chart displays the proportion of core, shell, and cloud of the SeT pangenome using 
14 genomes. (b) Gene frequency distribution across the number of genomes; the typical asymmetric U-shape 
is observed with most genes present in all genomes 

R Script 

# Read the presence/absence matrix obtained from Panaroo 
data <- read.table("gene_presence_absence.Rtab",sep = "\t", row.names = 1, 
header = T, check.names = F) 
# Calculate pangenome size 
pangenome_size = nrow(data) 
# Calculate the core, shell and cloud sizes as assigned by panaroo 
core_size <- length(rowSums(data)[rowSums(data) >= 0.99*ncol(data)]) 
shell_size <- length(rowSums(data)[rowSums(data) < 0.99*ncol(data) & 
rowSums(data) > 0.15*ncol(data)]) 
cloud_size <- length(rowSums(data)[rowSums(data) <= 0.15*ncol(data)]) 
par(mfrow = c(1, 2),pin = c(2.5, 2.5)) 
# Plot a pie chart displaying the core and accessory proportions; this is 
Figure 1A 
slices <- c(core_size,shell_size,cloud_size) 
pct <- round(slices/sum(slices)*100,2) 
lab <- paste(c("core", "shell", "cloud"),pct,"%",sep=" ") 
pie(slices, labels = lab, main="Pangenome", cex=0.8)
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# Plot a histogram of genes families in the 14 S. Typhimurium genomes; 
this is Figure 1B 
hist(rowSums(data), xlab = "Number of genomes containing a gene", 

ylab = "Number of genes", main = "Gene frequency", 
ylim = c(0,5000), xlim = c(0,ncol(data)+1), 
breaks = seq(min(rowSums(data))-0.5, max(rowSums(data))+0.5, by = 1)) 

In our example, the core genome represents around 70% 
(4210 genes) of the total SeT pangenome (5978 genes), whereas 
the accessory section (shell and cloud) represents about 30% 
(1768 genes). A value of 70% for the core genome is relatively 
high and can be explained by the fact that the genomes chosen 
are all strains of one serovar of the Salmonella enterica species; 
such genomes tend to share a large fraction of their protein-
coding genes. 

In most species, when the number of genomes analyzed 
increases, the size of the core genome tends to decrease, because 
newly added genomes may not have all the genes that are part of the 
previous core. The opposite happens with the accessory genome, 
which tends to increase with more genomes added to the analysis 
(however, see Subheading 6.2, for the concept of open and closed 
genomes). It is important to note that different pangenome recon-
struction programs may yield different pangenome estimates 
because they use distinct ortholog identification methods, identity 
cutoff values, or they may differentially account for assembly and 
annotation errors [54]. 

The gene frequency histogram (Fig. 1b) displays a “U-shape” 
distribution, where most genes are present either in only one 
genome (single-genome accessory genes) or in all genomes (core 
genes); the intermediate-frequency accessory genes generally have 
lower counts. This “U-shape” distribution is typically found in 
prokaryote genomes and is the result of the interplay between 
gene loss and horizontal gene transfer [4]. 

6.2 Open and Closed 

Pangenomes 

When analyzing a set of genomes using the concept of pangen-
ome, one important question to ask is whether the pangenome 
for that particular set is open or closed. A pangenome is classified 
as “open” when it always grows when new genomes are added to 
the computation. By contrast, a closed pangenome means that, 
after a certain number of genomes have been added, any new 
genomes for that taxon will not contain any genes not seen 
before. 

The openness/closeness of a pangenome can be estimated by 
constructing rarefaction curves and applying a statistical model as



proposed by Tettelin et al. [45]. A rarefaction curve is the cumula-
tive number of unique ortholog genes we observe as more and 
more genomes are added to the dataset (Fig. 2). The Heaps law 
model fits the rarefaction curve of the pangenome according to the 
function: 
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Fig. 2 Rarefaction curve of the SeT pangenome calculated from random 
combinations of strains. Fit to the displayed formula is shown in blue. The 
legend shows the power law function with parameter “γ” of 0.097, indicating 
an open pangenome 

n= k ×N γ 

w

•

here: 

n is the expected number of distinct genes for a given number of 
genomes (N) and

• k and γ are free parameters that are determined empirically. 

According to Heaps’ law (which is a power law), when γ > 0, 
the pangenome is considered open, and when γ < 0, the pangen-
ome is considered closed [45]. 

The rarefaction curve was generated using rarefaction() func-
tion of the micropan package [28] with 100 permutations. We then 
fitted a power law function and recovered the value of k and γ 
parameters. The script in R is shown as follows.
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R Script 

library(micropan) 
data <- read.table("gene_presence_absence.Rtab", sep = "\t", 
header = T, row.names = 1, check.names = F) 
# transpose dataframe 
df_t <- t(data) 
rownames(df_t) <- colnames(data) 
colnames(df_t) <- rownames(data) 
# generate rarefaction matrix 
rar<-rarefaction(df_t, n.perm = 1000) 
mrar <- as.matrix(rar) 
# melt rat 
rm <- melt(mrar[-1,-1]) 
# fit the power law to the rarefaction data 
fit_h<-lm(log(value) ~ log(Var1), data = rm) 
# extract parameters k and γ (gamma) 
k <- exp(summary(fit_h)$coef[1]) 
gamma <- summary(fit_h)$coef[2] 
alpha <- 1 -gamma 

# plot the rarefaction curve and power law function 
plot(value ~ Var1,data = rm,xlab="Number of genomes", 

ylab="Number of gene families",ylim=c(4000, 6000)) 
curve(k*x^gamma,1,14,add=TRUE, col="blue",lwd=2) 
legend(x = "bottomright", legend = 
paste("n=",round(k,3),"N^",round(gamma,3)), fill = "blue") 

The value we obtained for the γ parameter was 0.097, suggest-
ing that the SeT pangenome is open; this is consistent with results 
from the literature [55, 56]. However, there is also evidence that 
the pangenome for Salmonella enterica is closed [57]. Conclusions 
regarding the pangenome openness and closeness of species can be 
inconsistent between studies when a small number of genomes are 
used. The fact that the value for the γ parameter that we obtained is 
close to 1 is also indicative that the closeness or openness of this 
pangenome should not be a firm conclusion. 

Alternative metrics can quantify pangenome diversity such as 
genomic fluidity. This is a metric used to quantify the degree of 
dissimilarity in gene content between genomes. In the case of two 
genomes, genomic fluidity is calculated as the proportion of genes 
that are specific to one genome out of the total of genes present in 
both genomes. For a population, fluidity is determined by averag-
ing genome fluidity calculation over all pairs of genomes [58, 59].
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6.3 Comparison of 

Gene Content 

Graphical representations of gene content variation using the pres-
ence/absence matrix can be depicted by Venn diagrams, presence/ 
absence binary maps, or principal component analysis (PCA). 

Venn diagrams are only useful to represent gene content relation-
ships for, at most, a handful of genomes. Above that, Venn diagrams 
become progressively more complicated. The function vennDiagram 
() of the limma R package can be used to draw a gene content Venn 
diagram as illustrated in Fig. 3. The code used to plot Fig. 3 from the 
presence/absence matrix in the R environment is as follows. 

R Script 

library(limma) 
# import the gene presence/absence matrix generated by panaroo 
data <- read.table("gene_presence_absence.Rtab", sep = "\t", header = T, 
check.names = F, row.names = 1) 
# select only four genomes from the dataset 
counts <- vennCounts(data[6:9]) 
# plot Venn diagram 
vennDiagram(counts, circle.col = c("red", "blue", "green3", "yellow"), cex=1) 

To visualize variation in the genetic content of more than a 
handful of genomes, the presence/absence heatmap is more practi-
cal. In presence/absence heatmaps, each row represents a genome, 
while each column represents a gene (orthologous group); the 
presence of a gene is denoted as a colored cell, whereas an absent 
gene is represented by a non-colored cell. The clustering methods 
to group patterns of gene presence/absence in both genomes 
(rows) and genes (columns) help identify genes that are unique to 
certain subsets of genomes or that are shared among many gen-
omes. We used the pheatmap package [31] to generate a heatmap 
representation of the pangenome from the presence/absence 
matrix (Fig. 4). The script in R is shown as follows. 

R Script 

library(pheatmap) 
# read presence/absence matrix of gene content from panaroo 
data <- read.table("gene_presence_absence.Rtab",sep = "\t",header = T, 
row.names = 1, check.names = F) 
# transpose dataframe 
df_t <- t(data) 
rownames(df_t) <- colnames(data) 
colnames(df_t) <- rownames(data) 
# convert dataframe to matrix 
pange <- as.matrix(df_t, as.numeric) 
rownames(pange) <- colnames(data) 
# plot heatmap showed in Figurer 4A 
hm <- pheatmap(pange, clustering_distance_rows = "manhattan", 



Fig. 3 Illustration of a gene content Venn diagram for four SeT genomes (LT2, SMVET11, SMVET22, and 
SL1344). The numbers inside each region indicate the number of genes shared in that region. For example, 
the region that represents the intersection of all four ellipses contains 4400 genes, meaning that the four 
genomes share these many genes. The number outside all ellipses (881) represents the number of genes that 
are absent in these four genomes but are present in the other ten genomes of the dataset 

clustering_method = "ward.D", color = c("white", "skyblue4"), 
clustering_distance_cols = "manhattan", show_colnames = F, 
cluster_cols = T, cluster_rows = T, legend = F) 

# recover data matrix from heatmap after clustering 
reorder <- data[hm$tree_col[["order"]],] 
reorder <- reorder[,hm$tree_row[["order"]]] 
# plot heatmap of a selected region of the pangenome matrix (Figure 
4B) 
p2 <- pheatmap(t(reorder[5816:5890,]), show_colnames = T, 

cluster_cols = F, cluster_rows = F, legend = F, 
color = c("white", "skyblue4")) 

Figure 4a shows the full pangenome gene content with the 
presence of a gene in blue and the absence without color. The 
hierarchical clustering of genomes and genes allows us to observe 
different presence/absence patterns. For example, there is one 
cluster of 85 genes absent in four SeT isolates (SO4698-09, 
SO9207-07, D23580, and DT2), but present in the other ten 
genomes (Fig. 4b). Virulence plasmid-borne spvB and spvC genes 
stand out among these clusters of genes. The isolates that lack spvB 
and spvC genes may exhibit reduced virulence [60]. 

PCA is a statistical method that helps analyze genomic diversity 
and identify possible associations of genomes based on gene con-
tent [61]. In a PCA, the gene presence/absence matrix is first



transformed into a set of principal components that capture the 
variation in gene content across the genomes. The principal com-
ponents are then plotted in a two-dimensional space, where each 
point represents a genome, the position of the point reflects its gene 
content, and the distance between points is a measure of how 
different two genomes are in terms of gene content. The points 
can be colored according to any characteristic of the strain (e.g., 
host, isolation country, sequence type). Since we have metadata 
associated with each SeT strain in our dataset (Table 1), we will use 
it to color the strains according to the host source and phylogroup 
variables. The R package ggplot2 can be used to perform a PCA 
from the gene presence/absence matrix. 
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Fig. 4 (a) The heatmap represents the gene content, in terms of presence/absence of genes in the SeT 
pangenome inferred from the comparison of fourteen genomes. Gene presence is shown in blue and gene 
absence in white. A total of 5976 orthologous groups (genes) representing the full pangenome size are 
displayed. Dendrograms clustering genes (X-axis) and genomes (Y-axis) according to gene presence/absence 
pattern were produced in pheatmap package using hierarchical clustering based on the “ward.D” method with 
“manhattan” distance. (b) The heatmap highlights a cluster of 85 genes (dashed box in (a)) absent in four 
genomes (SO4698-09, SO9207-07, D23580, and DT2) but present in the other ten genomes. These include 
the spvB and spvC genes (red arrows), which are plasmid-carried virulence factors
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R Script 

library(ggplot2) 
# read the presence/absence matrix generated by panaroo 
data <- read.table("gene_presence_absence.Rtab", sep = "\t", header = T, 
row.names = 1, check.names = F) 
# transpose dataframe 
df_t <- t(data) 
rownames(df_t) <- colnames(data) 
colnames(df_t) <- rownames(data) 
# read the metadata (table 1 of this chapter) as a dataframe 
meta <- read.table("metadata.tab", header = T, sep = "\t", row.names = 1) 
# merge presence/absence matrix with metadata into one dataframe 
dafr <- data.frame(merge(df_t, meta, by = 0)) 
# compute principal components on the accessory portion of the pangenome 
PC<-prcomp(dafr[, c(4211:5979)]) 
# you can use "Phylogroup" instead of "Host" 
PCi<-data.frame(PC$x, Host=dafr$Host) 
# plot PCA labeled by Host (or Phylogroup) 
ggplot(PCi, aes(x=PC1,y=PC2,fill=Host)) + 

geom_point(size = 5, alpha = 0.5, shape = 21) + 
scale_fill_brewer(palette = "Set1") + 
theme_bw() 

The PCA analysis of SeT gene content was unable to distin-
guish isolates from different host sources (Fig. 5a). However, iso-
lates from phylogroups α and β were separated by the second 
component (Fig. 5b), which means that there is differential gene 
content between isolates from these two phylogroups. 

Fig. 5 Principal component analysis of the 14 SeT genomes. The graph is generated from the gene presence/ 
absence matrix. Each dot represents a genome, which is colored according to host source (a) or phylogroup 
(b). A horizontal line around y value 0 in (b) provides a good separation between the two phylogroups, 
suggesting that phylogroup is indeed a good determinant of gene content, and that separation is provided by 
the second principal component (PC2)
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6.4 Pangenome-

Wide Association 

Studies 

Genome-wide association study (GWAS) is an approach for studying 
genotype-phenotype associations. In prokaryotes, the GWAS 
approach is applied to pangenomes (pan-GWAS) in order to identify 
genes associated with specific phenotypes, such as host source, viru-
lence, and antibiotic resistance [62]. Scoary [34], a popular tool for 
pan-GWAS analysis, correlates gene presence/absence from pangen-
ome analysis with phenotypic traits. The presence/absence matrix 
generated by Panaroo can be used as input for Scoary. 

Scoary needs two inputs: the gene_presence_absence.csv file gen-
erated by Panaroo and a trait file (csv format) containing pheno-
typic traits. For example, if the trait is resistant to tetracycline and 
the categories are resistant and susceptible, we could use “0” to 
indicate susceptibility and “1” to indicate resistance. 

Bash Shell 

$ scoary.py -g <gene_presence_absence.csv> -t 
<traits.csv> 

Here, we cannot use our dataset because GWAS requires more 
than just 14 genomes to assess the association to a specific pheno-
type (for additional information, see [63]). The power to find 
statistically significant associations is affected by several factors 
such as sample size, allele frequency, population diversity and struc-
turing [64]. A large number of genomes (hundreds) are typically 
used in this kind of analysis [62]. 

7 Phylogenetic Tree Based on Core Genome Alignment 

Phylogeny inference is a vast topic; we include here an example of 
phylogeny inference because it is relatively straightforward to 
obtain a phylogeny given the alignment file core_gene_alignment. 
aln generated by Panaroo. For more information on phylogeny 
inference, we refer the reader to [65]. Most of the phylogeny 
inference tools use a maximum likelihood approach, such as 
RAxML [66], FastTree [67], and IQ-TREE 2 [26]. 

It is important to consider the effect of homologous recombi-
nation when reconstructing phylogenies in prokaryotes. Some 
tools like Gubbins [25] or ClonalFrame [68] can be used to mask 
recombinant regions before reconstructing a phylogeny. 

IQ-TREE 2 offers multiple options, including ultrafast boot-
strapping (-B) and ModelFinder to find the best substitutions 
model (-m). The tree is typically created in Newick format and 
can be visualized by ggtree package [24] in R. Commands for 
recombinant regions detection and phylogenetic reconstruction 
using Gubbins and IQ-TREE 2 starting from core_gene_align-
ment.aln file generated by Panaroo are shown as follows.
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Bash Shell 
# Run Gubbins for detection of recombination in the alignment. 

$ run_gubbins -p gubbins core_gene_alignment.aln 

# Extract SNPs from the alignment using SNP-sites. 

$ snp-sites -c gubbins.filtered_polymorphic_sites. 
fasta > clean.core.aln 

# Reconstruct the phylogenetic tree using IQ-TREE 2 with 1000 
of bootstrap (-B). 

$ iqtree2 -s clean.core.aln -B 1000 --prefix tree_ 
clean_ST 

IQ-TREE 2 takes a few minutes on a standard laptop and 
generates several files. The tree file (.treefile) in Newick format is 
used for ggtree and phangorn package in R for tree visualization. 

R Script 

library(ggplot2) 
library(ggtree) 
library(phangorn) 
# read Newick file generated by IQ-TREE2 
tree <- read.tree("tree_clean_ST.treefile") 
# set midpoint root 
treeMP<-midpoint(tree) 
# draw phylogenetic tree 
gg <- ggtree(treeMP, layout= "rectangular", right=F) + 
geom_tiplab(size=2.8, linesize=.5,offset = 0.0003,align = T) + 
geom_text2(aes(subset = !isTip, label=label), size = 2, 

hjust=1.2,vjust = -0.3)+ 
geom_treescale() 

# read metadata information (table 1) 
meta <- read.table("metadata.tab", header = T, sep = "\t") 
# add host source information to the tree 
p1 <- gg %<+% meta[,c(1:2)] 
# draw tippoint colored according to host information 
p2 <- p1 + geom_tippoint(aes(fill=Host, shape=Host), 

size=5, alpha=1, colour = "black") + 
scale_fill_brewer(palette = "Set1")+ 
scale_shape_manual(values = rep(21,each=12))+ 
theme(legend.position = "right") 

# draw vertical bars on clades representing α and β clades 
p3 <- p2 + geom_cladelab(node=20,barsize=1.5, label="α",     

offset=0.0008,offset.text=.0) + 
geom_cladelab(node=27,barsize=1.5, label="β", 
offset=0.0008, offset.text=.0) 

# plot 
p3
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Fig. 6 (a) Phylogenetic tree of S. Typhimurium reconstructed from the core genome alignment of fourteen 
genomes using IQ-TREE 2. Tip point circle shapes are colored according to the host source. Vertical black bars 
represent well-supported clades (α and β phylogroups). (b) heatmap of ARGs predicted by ABRicate using the 
ResFinder database. Turquoise boxes indicate that the gene is present; white boxes show the gene is absent 

The phylogenomic tree of SeT (Fig. 6a) shows two main 
groups, which represent the well-known α and β clades [17], both 
with high bootstrap support. A probable association of lineages to 
certain hosts is not evident due to the small number of isolates. 
However, previous works have shown that certain lineages are 
associated with some hosts, such as DT8 associated with ducks or 
ST313 associated with humans in Africa [69]. 

8 Pangenome Graphs 

The most common methods used to generate prokaryotic pangen-
omes provide a matrix indicating the presence or absence of genes, 
without regard for gene order or orientation [52, 70]. However, 
more detailed information on the variability of both gene content 
and genome structure within a group of genomes may provide 
valuable information about the evolution of the corresponding 
species. 

Novel algorithms have emerged to address this issue, focused 
on extending the pangenome framework of microbial diversity to 
graphical models [71]. A pangenome graph is a model in which 
nodes represent gene families and edges represent a relation of



genetic contiguity, allowing the exploration of structural and 
sequence order variation in genomes. Current tools that use this 
approach in prokaryotic genomes are PPanGGOLiN [30] and 
PanGraph [72]. 
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While PPanGGOLiN follows the common gene-based 
approach using annotated .gff genomes as input, PanGraph uses a 
sequence-based approach to group homologous sequences 
through nucleotide alignments alone, without relying on annota-
tion. However, this method requires the use of high-quality 
genomes. 

In PPanGGOLiN, a statistical approach is used to classify the 
gene presence/absence of the pangenome into persistent (gene 
families present in almost all genomes), shell (gene families present 
at intermediate frequencies), and cloud (gene families present at 
low frequency) partitions. PPanGGOLiN uses gff/gbk annotation 
files as input and yields multiple output files such as gene_presen-
ce_absence.Rtab and matrix.cvs, which are also produced by 
Panaroo. The most important output of PPanGGOLiN is an 
HDF-5 file named pangenome.h5. It stores all information about 
the pangenome, including data to construct the graph. We will now 
use PPanGGOLiN to compute the pangenome from the GFF files 
of the 14 S. Typhimurium genomes. 

Bash Shell 

$ ppanggolin workflow --anno gff_list.tab 

The gff_list.tab is a tab-separated file containing a list of the 
strain names and paths to the associated GFF files of all genomes 
used in the analysis. After the running is completed, PPanGGOLiN 
produces a directory containing all outputs. To visualize the parti-
tioned pangenome graph we load the pangenome Graph_light. 
gexf.gz file (this is the file that contains the graph description in 
terms of nodes and edges) into the Gephi program. 

The Gephi software is an open-source tool for exploration and 
visualization of networks and graphs. We use Gephi with the For-
ceAtlas2 algorithm and the following parameters: Scaling= 10,000, 
Stronger Gravity = True, Gravity = 2.0, and edge weight influ-
ence = 2.0. The final plot is shown in Fig. 7. 

The PPanGGOLiN pangenome graph in Fig. 7 displays the 
overall gene content diversity of the 14 S. Typhimurium genomes. 
The persistent partition (orange nodes) is the most abundant and 
corresponds to gene families present in at least 13 genomes (core 
genome). The shell partition (green nodes) is represented by gene 
families present in 6–12 genomes and these are arranged in several 
continuous groups surrounded by longer regions with showing 
synteny. For example, a region of contiguous genes encoding plas-
mid proteins belongs to the pLST plasmid of S. Typhimurium



present in most genomes but not in all (Fig. 7b). Likewise, a group 
of prophage genes is present only in some genomes and inserted 
(alternative path) between conserved regions (Fig. 7c). Figure 7d 
shows a region where some genomes have lost genes (no alternative 
path is observed); this region corresponds to the second flagellar 
phase commonly lost in monophasic variants. For instance, the 
SMVET11 strain of our dataset was previously described as a 
monophasic S. Typhimurium [18]. 
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Fig. 7 (a) The partitioned pangenome graph was calculated from 14 SeT genomes. Nodes represent gene 
families and edges represent a relation of genetic contiguity. The persistent, shell, and cloud nodes are 
colored in orange, green, and blue, respectively. The size of the nodes is proportional to the number of strains 
which share that gene. The insets (b–d) depict subgraphs corresponding to the shell partition inserted 
between conserved sequences 

9 Identification of Sequences of Interest in Genomic Data 

9.1 Prediction of 

Antimicrobial-

Resistance Genes and 

Virulence Factors 

Identification of antimicrobial-resistance genes (ARGs) and viru-
lence factors (VFs) in genomic data is standard in clinically asso-
ciated bacteria. ARGs search in assembled genomes can be carried 
out using curated databases such as ResFinder [73], CARD [74], or 
NCBI-ARMFinderPlus [75], whereas VFs can be identified using 
the virulence factor database (VFDB) [76]. The ABRicate pipeline 
(https://github.com/tseemann/abricate) is frequently used to 
screen assemblies against the databases mentioned above. It runs

https://github.com/tseemann/abricate


a BLAST/DIAMOND search in FASTA files (assemblies) with 
customizable identity/coverage cutoffs and also allows combining 
reports of different runs into a matrix of gene presence/absence. 
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We use the genomes in FASTA format downloaded from Gen-
Bank as input to run ABRicate with the ResFinder database as 
shown by the following commands. 

Bash Shell 
# Run ABRicate with identity/coverage cutoff of 90/90% 
respectively. 

$ abricate --db resfinder *.fasta --minid 90 --
mincov 90 > result_resfinder.tab 

# Combine reports into presence/absence matrix. 

$ abricate --summary result_resfinder.tab > resfin-
der_summary.tab 

ABRicate generates an antimicrobial-resistance gene presence/ 
absence matrix with a present gene represented by its “% of cover-
age” and an absent gene denoted by a point (“.”). To visualize the 
gene presence/absence matrix in a heatmap alongside the phyloge-
netic tree we use the gheatmap() function of ggtree package in R 
with the following code. 

R Script 

library(ggnewscale) 
# read the gene presence/absence matrix (resfinder_summary.tab) 
df1 <- read.table("resfinder_summary.tab", sep = "\t", header = T, 
check.names = F, row.names = 1) 
# remove first row from the dataframe containing the number of ARGs 
df2 <- df1[,-1] 
# rename coverage values as 'P' if present and 'A' if absent 
df2[df2 >= 90] <- 'Present' 
df2[df2 < 90] <- 'Absent' 
# start with p3 object generated in the section 7 
p4 <- p3 + new_scale_fill() 
# generate the gene presence/absence heatmap alongside the tree 
p5 <- gheatmap(p4, df2, width = 1.2, font.size = 2.8, 

color ="black", colnames_offset_y = -0.4, colnames_position = 
"top", offset = 0.0012, hjust = 0, colnames_angle = 90) + 

scale_fill_manual(breaks = c("Present", "Absent"), 
values = c("#6da3a3", "gray95"), 
name = "Plasmid replicon") + 

theme(legend.position = "right") 
p5 + ylim(NA,16)



Step-by-Step Bacterial Genome Comparison 129

In Fig. 6b we observe that the 14 genomes we are analyzing 
have different ARG content. Moreover, only one ARG (aac(6’)-
Iaa) is present in all strains. aac(6′)-Iaa gene encodes an acetyl-
transferase that confers resistance to aminoglycoside drugs. It was 
acquired before Salmonella enterica serotype diversification, and is 
present in almost all isolates of the Typhimurium serotype 
[77]. Diverse ARGs were detected in humans and livestock-
associated SeT strains (the columns of Fig. 6). Resistance to quino-
lone is typically found in Salmonella and is due to point mutations 
in DNA gyrase and topoisomerase IV genes. ABRicate only detects 
acquired resistance genes, so we recommend using PointFinder 
[78] to detect chromosomal mutations predictive of drug 
resistance. 

9.2 Phage Sequence 

Prediction 

Phage prediction tools are used to identify prophages and other 
viral sequences in assembled bacterial genomes. There are several 
different phage prediction tools available, with each using different 
algorithms and databases. Two of the most commonly used phage 
prediction tools are PHASTER [79] and VirSorter2 [36]. PHA-
STER runs on a web server and uses a combination of sequence 
similarity, gene prediction, and structural analysis to identify pro-
phages in bacterial genomes. It also provides information on the 
location and orientation of the prophage, as well as the predicted 
functions of its genes. VirSorter2 is a standalone program that can 
be run locally and uses a machine-learning approach to classify viral 
sequences in genomic and metagenomic datasets. It can identify 
complete or partial phage genomes, as well as other types of viruses, 
and provides information on their taxonomy, gene content, and 
potential hosts. 

To predict phage sequences for the genomes in our dataset, we 
loop VirSorter2 through all the genomes using the following 
command. 

Bash Shell 

$ for i in *.fasta; do virsorter run -w "${i%%.*}"_vir -i 

"$i" --include-groups "dsDNAphage,ssDNA" -j 4 --min-score 

0.8 --min-length 10000; done 

VirSorter2 produces two output files: final-viral-boundary.tsv 
and final-viral-boundary.fasta. The first is a tab-separated table that 
contains the start and end base-pair positions of all predicted phage 
sequences in the genome and the other file contains the sequence of 
these phages in FASTA format.
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Fig. 8 Easyfig output image of the phage sequences of two S. Typhimurium isolates (LT2 and U288). Coding 
regions are shown as arrows. Selected open reading frames are colored in relation to their functions. The 
percentage of sequence similarity is indicated by the intensity of the gray color 

We can compare phage sequences and evaluate their conserva-
tion and synteny plotting comparison figures of multiple genomes. 
To achieve this, we can use Easyfig [20], an application written in 
Python with an easy-to-use graphical user interface used for creat-
ing linear comparison figures of multiple genomic loci from anno-
tation files (e.g., GenBank). 

The gbk annotation file of LT2 and U288 genomes generated 
by Prokka in Subheading 5 was uploaded to Easyfig to generate a 
comparative plot of phage sequences. In Easyfig, set the start and 
end positions of the phage predicted by VirSorter2. Then, generate 
a BLAST comparison file by clicking on “generate blastn files.” 
Finally, “Create Figure” to generate the image that can be exported 
in SVG format as shown in Fig. 8. 

In Fig. 8, we observe sequence conservation and synteny in 
most of the phage sequences of two SeT genomes. However, 
distinct integrase genes were present in the genomes. Previous 
works have revealed that phages are responsible for the main 
genetic content variation in Salmonella genomes [17, 80]. 

10 Conclusion 

In this chapter, we used freely available software to compare 14 SeT 
genomes and described the characteristics of the pangenome, 
explored the genetic content variation, and performed a phyloge-
nomic analysis, starting from genomes downloaded from GenBank. 
Although in our example we used a small dataset for illustrative 
purposes, it revealed an open pangenome for SeT of size 5978 
genes and a core genome with 4210 genes. We identified important 
variations in terms of gene content, including differential presence 
of virulence genes between isolates, gene content distribution



according to phylogroups, and high synteny conservation. Addi-
tionally, we predicted ARGs in livestock- and human-associated 
isolates and annotated phage sequences. The programs and codes 
presented can be used by the reader interested in carrying out a 
comparative analysis of genomes from any bacterial species. 
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