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Art, system theory and biochemistry

2Julian Trevelyan, 1936. A Symposium.
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Biological functions are the translation of the inter
relationships between molecules

DNA

Transcripts

Proteins
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How cells control the composition of their biomass?

Activity/regulation

Transcription Translation

DNADNA RNARNA ProteinProtein

Information Transferency/regulation

Genome Transcriptome Proteome

Cellular repertoire of macromolecules

MetabolitesMetabolites

Activity/regulation

Metabolome



Systems biology (my view)

Holistic approach for studying biological systems with the aim of identifying
and understanding systems level features through the integrative analysis
of different layers of biological information.

„Systems biology is the science of discovering, modeling, understanding
and ultimately engineering at the molecular level the dynamic
relationships between the biological molecules that define living
organisms. „

(Leroy Hood PhD, MD. President of Institute for Systems Biology, Seatle U.S.A.)

Integrative approach in a Systems Biology framework 
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“The physical world is not simply a sum of spatial and temporal single worlds
running one besides the others, and many phenomena escape [entziehen sich]
the understanding when one does not consider a physical object [Gebilde] as a
whole” (Max Planck 1929:17).

System theory has long been discussed

Bertalanffy (1928:69–70) characterized a systemic state (“Gestalt”) as
comprising properties that cannot be found by simple addition of the
components’ properties and that furthermore disappear when the “Gestalt” is
destroyed [Systemzustand] (Bertalanffy 1929c:89).

Drack , 2010, Q Rev Biol. 2010, May 22.
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“Systems biology“ articles in a decade

Chuang et al., Ann. Rev. Cell. Dev. Biol. 2010. 26:721-44.
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Wholeness behaviour

How to identify the laws concerning the relationships
among ALL parts of the biological system?

biowiki.ucdavis.edu

www.cellsignal.com

Relationship among parts Relationship among ALL parts



https://news.vanderbilt.edu/2011/10/13/robot-biologist/

“These multi-scale 
interactions produce 
emergent phenomena, 
including life and 
consciousness” (John P. 
Wikswo)

Complex systems
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Complementary approaches



https://en.wikipedia.org/wiki/Complex_systems_biology

Complex systems and emergent properties
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DNA
(Desoxirribonucleic acid)

Identification and quantification of pools of biomolecules
– the “Omics” approaches

Pool of biomoleculesSingular biomolecule

GENOME

mRNA
(Ribonucleic acid)

Proteins

TRANSCRIPTOME

PROTEOME

Metabolites Metabolome

.

.
.
.

Integrative analysis
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Integrative OMICS analysis is on the horizon

Current Opinion in Chemical Biology 2009, 13:532–538

We define data integration as the use of multiple sources of information (or data) to provide a better 
understanding of a system/situation/association/etc. (Gomez-Cabrero et al_2014, DOI: 10.1186/1752-0509-
8-S2-I1)
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Different OMICS datasets are not always directly 
correlated

doi:10.1002/pmic.201600140



Perturbation of 
single parameter

Top-down data

• complete
• quantitative
• accurate
• reproducible
• high-throughput
• kinetics 

Theoretical 
Model

Prediction

Systems biology approach (one of many)

Chlamydomonas reinhardtii

Experimental datasets:
transcriptomics, 
translatomics,
proteomics, 
metabolomics, 
physiological and biochemical parameters
(gas exchange, chlorophyll fluorescence, 
enzyme activities, …) 
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Generation of models of biological systems from systematic 
measurements, not necessarily “omics” data. 
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“Transcriptome” Proteome

Spatial-temporal profiling

High throughput methods for relative quantification

qRT-PCR/ FAIRE-seq LC-MS

• Statistical methods
• Functional annotation
• Relative quantification
• Network analysis

Functional signatures
• Genes/proteins
• Epigenetic modifiers
• Regulatory motifs
• Metabolites

“Regulome”

Biological networks
• Functional modules
• Pathways
• Axis of regulation
• Bootlenecks

Cellular
mechanisms

Response
Classification

Candidates
Discovery Interactions

Overview of our scientific and experimental approaches

Metabolome

GC-MS

Synthesizer
Systems
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Microalgae can contribute to sustainable applications

Winck et al, 2013. J.Proteomics



18Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff, Keith Roberts, and James D Watson; 
http://www.ncbi.nlm.nih.gov/books/NBK28332/figure/A66/

Microalgae diversity: uni and multicellularity
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The five eukaryotic supergroups that have been identified using molecular data. 

Kyeong Mi Kim et al. Int J Syst Evol Microbiol 2014;64:333-345

Distribution on supergroups

cyanobacterium-derived
primary plastids

red algal-derived
secondary plastids
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Microalgae in the oceans, rivers and soil

NASA Earth Observatory image by Joshua Stevens, using Landsat data from the U.S. Geological Survey. Caption by Adam Voiland.

http://earthobservatory.nasa.gov/IOTD/view.php?id=87083&src=ve

Raja et al., Oceanography 2014, 2:1
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Raja et al., Oceanography 2014, 2:1

Microalgae biomass production in scale
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Microalgae cultivation
Bioreactors
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Microalgae biomass in a sustainable scenario
BIORREFINARY

Strong development is needed in the field of microalgae biomass production in 
order to make it economically competitive. Further research is needed.
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Photosynthesis Biomass Growth

Microalgae adjust and optimize carbon accumulation for
proper biomass production and growth

CO2

Chloroplast
Nucleus

O2

2H2O
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LIGHT

TEMPERATURE
CARBON 
DIOXIDE

TIME 

GrowthBiomass

Environmental factors  affect biomass production

http://www.icis.com Nature 474, S15–S16 (23 June 2011)
doi:10.1038/474S015a

How cells control the biomass production
and biomass composition ?



Complex mechanisms control biomass accumulation and
composition

Winck, F.V., et al (2013). J Proteomics, 94C, 207-218.
26

Activation of Carbon Concentrating 
Mechanism

Nutrient stress-induced cellular responses

Siaut et al., 2011 BMC Biotechnology.

Páez Melo, et al. (2014) Advances in Computational Biology

Limited uptake on high carbon dioxide
Cell growth curves 
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Exogenous and endogenous stimuli (e.g. CO2, light, temperature, hormones)

Regulatory mechanisms (epigenetic and genetic)

Core histone
octamers

Transcription factor

Transcription regulator

Nucleus DNA

Nucleosomes

Transcriptional control influences cellular responses

Regulatory region



Regulatory proteins modulate gene transcription by
multi-combinatorial mechanisms

Modified from Komili, S. and Silver, P.A. (2008). Nat Rev Genet, 9, 38-48. 28

TF = Transcription factor
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The combination of different layers of information can help 
us to understand the transcriptional control of biomass 
accumulation 

Proteomics
(Regulatory proteins)

Transcriptomics
(Activation of transcription)

Genomics
(Regulatory elements)

mRNA

?

? ?



Experimental analysis of microalgae cellular responses 
under carbon dioxide limitation 

30Chlamydomonas reinhardtii



31Vischi Winck F, Arvidsson S, Riaño-Pachón DM, Hempel S, et al. (2013) Genome-Wide Identification of Regulatory Elements and Reconstruction of Gene 
Regulatory Networks of the Green Alga Chlamydomonas reinhardtii under Carbon Deprivation. PLoS ONE 8(11): e79909. 

p < 10 -5

Expression profiles of transcription factors were identified

Quality threshold (QT) clustering method

130 genes



Time-series analysis of cellular responses 

Constant light  
(200µE m-2 s-1)

32
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Transcript profiling: the abundance of gene transcripts
in one specific moment

•CC BY-SA 3.0https://en.wikipedia.org/wiki/Reverse_transcription_polymerase_chain_reaction
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Transcript profiling revealed transcripts responsive to 
reduced CO2 concentration

Gene A Transcript of gene A

Gene B

Transcript of gene B
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Matemathical modeling
(Inner Composition Alignment- IOTA* method)

Expression data

* Hempel S, Koseska A, Kurths J, Nikoloski Z. Inner composition alignment for inferring directed networks from short 
time series. Phys Rev Lett. 2011 Jul 29;107(5):054101.

Directed gene regulatory network was inferred based on 
experimental data and mathematical modeling



Permutation-based reconstruction of gene 
regulatory networks

36
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Networks in biology

Complex biological systems may be represented and analyzed as 
computable networks

Examples of networks

 Protein–protein interaction networks
 Gene regulatory networks ( molecular regulators networks)
 Gene co-expression networks (transcript–transcript association networks)
 Metabolic networks (reactions and enzymes networks)
 Signaling networks (usually integrate protein–protein interaction networks,
gene regulatory networks, and metabolic networks)
 Neuronal networks
 Between-species interaction networks
 Within-species interaction networks
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Systems biology and biological networks

Biological networks are one of the many forms of modeling and representing 
relationships between biological components, which are dynamical units of the
system (e.g., genes, proteins, metabolites, etc.).

Edges or lines 
(links between units)

Nodes or vertices
(dynamical units) 

Networks used for visualization and modeling purposes
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Systems biology and the prediction of biological
networks

Dong et al. Reverse enGENEering of Regulatory Networks from Big Data: ARoadmap for Biologists. Bioinformatics and Biology Insights 2015:9 61–74 doi:
10.4137/BBI.S12467
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Expected and unexpected correlations in biological
states

Dong et al. Reverse enGENEering of Regulatory Networks from Big Data: ARoadmap for Biologists. Bioinformatics and Biology Insights 2015:9 61–74 doi:
10.4137/BBI.S12467
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Correlation of expression values

Dong et al. Reverse enGENEering of Regulatory Networks from Big Data: ARoadmap for Biologists. Bioinformatics and Biology Insights 2015:9 61–74 doi:
10.4137/BBI.S12467
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Correlation to causation in reconstructing biological
networks

Without
directionality

With
directionality
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Directionality in biological networks

Scientific Reports 4, Article number: 7497 (2014) doi:10.1038/srep07497

Fidelity and dynamics (Time-series)
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MEME- Motif finder 
(http://meme.sdsc.edu/meme4_3_0/intro.html)

MAST-Specificity analysis of
overrepresented motifs against the
whole set of promoter sequences

(14,598)

Gene promoter motifs were predicted for expressed genes 

DNA sequence of the promoter
regions of TFs showing alteration

on transcript level
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Down-regulated genes: SBP, C3H, FHA, Orphan

Genes regulated by a common set of TFs may have 
similar regulatory regions in their promoters

p < 10 -5 p < 10 -5 p < 10 -5p < 10 -5

Co-occurred motifs in co-regulated genes
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Early-responsive genes may have a role in 
chromatin remodeling

MYB = Myeloblastosis viral oncogene
DDT = DNA different transcription
CSD = Cold shock domain
HSF1 = Heat shock factor 1
SNF2 = Sucrose nonfermenting 2

PIC = Pre-initiation complex
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Late responsive TF gene products may modulate important 
CCM-related genes  

LCR = Low CO2 stress response regulator
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Identification of regulatory elements

Regulatory element
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Nucleosome-depleted region

Nucleosome-depletion is correlated with transcription

Nucleosomes
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Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE)

Modified from Giresi et al., 2007 Genome Res.
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Regulatory regions of the genome were isolated from 
cells under carbon dioxide limitation

Modified from Giresi et al., 2007 Genome Res.
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There are two candidate regulatory regions in the Cah1 locus
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FAIRE-seq: Enriched FAIRE fragments were identified in a 
genome-wide manner  

50 bp paired-end reads (Illumina Hiseq 2000)
Detection of enriched fragments using the MACS tool

Winck F.V., Arvidsson S, Riaño-Pachón DM, Hempel S, et al. (2013) Genome-Wide Identification of Regulatory Elements and Reconstruction of Gene 
Regulatory Networks of the Green Alga Chlamydomonas reinhardtii under Carbon Deprivation. PLoS ONE 8(11): e79909. 
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Regulatory regions were identified using FAIRE-seq

http://tartarus.uniandes.edu.co/cgi-bin/gbrowse/Chlamydomonas_v4/

FAIRE peaks

Cah1 gene transcript

HSP70A gene transcript

DNAse I hypersensitive site
(-7bp to +67bp from the TSS)
(Schroda et al., 2002 Plant J.) FAIRE summit
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FAIRE peaks of regulatory genes responsive to carbon deprivation
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FAIRE summits tend to appear close to coding sequences

~ 70 % of the FAIRE summits are located within 1500 bp from 5´ or 3´ end
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FAIRE peaks identified are genome-wide distributed 

Winck F.V., Arvidsson S, Riaño-Pachón DM, Hempel S, et al. (2013) Genome-Wide Identification of Regulatory Elements and Reconstruction of Gene 
Regulatory Networks of the Green Alga Chlamydomonas reinhardtii under Carbon Deprivation. PLoS ONE 8(11): e79909. 

Correlation of FAIRE 
peaks

Positive for TF and TR 
genes with FC > 2

No correlation to the
direction of the
expression change
(Up or Down)
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Integration of gene expression data with regulatory
genomics data

TFs with a FAIRE peak
in the TSS region and
Fold change >2 

TFs with Fold change >2
and no FAIRE peak in 
the TSS.

TF
Gene promoter

CO2 (input -ON/OFF)

Transcriptional
or post transcriptional

control of gene 
expression levels
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Transcriptome

Different OMICS data can give us better insights

FAIRE-seqp-FAIRE

Correlation analysis
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Inference of timeline for cellular responses 
(Early-responsive genes and late-responsive genes)

DDT = DNA different transcription
HSF1 = Heat shock factor 1

Pre-init. complex

LCR = Low CO2 stress response regulator
PIC = Pre-initiation complex



Proteome analysis of regulatory regions revealed the 
identity of annotated regulatory proteins

FAIRE-seqp-FAIRE

61

Unpublished data



FAIRE shotgun proteomics revealed identity of regulatory 
proteins responsive to variations in the CO2 concentration

• HSP70 
• Ribosomal L19,L7Ae,S9,L17
• Nucleosome assembly protein (NAP)
• Glyceraldehyde 3-phosphate dehydrogenase
• Histone core
• Calcium-binding EF-hand
• Prefoldin
• Helicase superfamily 1 and 2
• Translation elongation factor P

62

141 “unspecific” DNA-binding proteins

Proteins found in chromatin fraction 
without formaldehyde crosslinking 

Control

Complex protein
sample

Mass 
spectrometry
(Orbitrap XL)

Protein
Identification
(MaxQuant)

(Unpublished data)
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Specific regulatory proteins were identified under low
CO2 concentration condition

• 39 Transcription factors/regulators (SNFs, bZIP, Jumonji)
• Initiation factor eIF-4 gamma;
• Argonaute and Dicer proteins;
• Zinc finger;
• GATA-type;
• Ankyrin;
• Tetrapyrrole biosynthesis,
• hydroxymethylbilane synthase

189 stress responsive 
DNA-binding proteins

High CO2 (5%) vs Low CO2 (0.04%)

(Unpublished data)
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Integration of gene expression information, regulatory
genomics and proteomics data of carbon limitation

TFs with a FAIRE peak
in the TSS region and
Fold change >2

TFs with Fold change >2
and no FAIRE peak in 
the TSS.

TFs identified in the
Proteome of chromatin

TFs identified in the
Proteome of chromatin,
No FAIRE peak



65

Regulatory genes
+

Regulatory proteins

FHA

MYB

C3H

?

bHLH RWP-RK

Regulatory regions
+

Regulatory proteins
+

Regulatory genes

1h

3h

Testable hypothesis of transcriptional control of the CCM mechanism

Integrative analysis gave us testable hypothesis
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Gene expression network and proteome analysis 
revealed 

Transcripts and proteins association

Identifier gene 
family Fold change 1h Fold change 2h Fold change 3h FAIRE peak

6783 SNF2 0.845556467199114 5.89144285360181 0.71443470567

34069 FHA 1.93629295615854 0.985677031777896 0.6502876073

101275 CCAAT 0.585306980608999 0.786567180219919 0.34460629804

126810 CSD 6.85803552567784 11.127986144712 3.1816773588

129649 MYB 1.33362368604303 1.11777881115331 1.0558646708

135484 SNF2 0.616329401178817 1.50848377331645 0.82714320871

145251 HMG 0.76076099161463 0.50358781730018 1.3640979323

146239 C3H 1.13833479961758 0.930144334461022 0.57714902489

149734 C2H2 0.887126470785533 0.754275300871498 1.0465798934

187531 bZIP 0.586500467357807 1.17644290555762 0.46354668714
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Transcriptomics
(TFs qRT-PCR)

Integrative analysis can give us better insights on gene 
regulatory networks

)        

Regulatory
genomics

(FAIRE-seq)        

Proteomics
(p-FAIRE)

Correlation analysis
Carnielli, C.M., Winck, F.V., Paes Leme, A.F. (2015) Functional annotation and biological interpretation 
of proteomics data. Biochimica et Biophysica Acta 1854, 46–54.
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Identification of critical networks and elements related 
to regulation of biomass accumulation

Melo D., Moncada R.-P., Winck F. and Gonzalez Barrios, A.F. (2014) In Silico Analysis for Biomass Synthesis under Different CO2 Levels for 
Chlamydomonas reinhardtii Utilizing a Flux Balance Analysis Approach. In Castillo, L.F., et al. (eds), Advances in Computational Biology. Springer 
International Publishing, pp. 279-285.

1
2

3

ProteomicsTranscriptomicsGenomics

Quantitative models, modeling and simulation

1 2 3

Selection of subnetworks for transcriptional engineering

4

4 Metabolomics
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Information that the integrative analysis provided

Which TFs may play a role in biomass accumulation

When TFs exert regulatory role

Where TFs interact with chromatin

Further analysis performed

What effects TFs generate on the metabolism

How TFs affect metabolic sensitive genes  TFs
Gene 

expression

Metabolism



Biomass
(Output)
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Integrative analysis helped us to reduce the number of
possible candidate subnetworks that may control biomass
accumulation

Input: levels of CO2 (Low/High)

Regulatory regions: TF-DNA interactions

Regulatory genes: Modulated regulators

Target genes: Metabolic targets
(sensitive genes)

Output: High biomass/Lipids/Pigments

TF
promoter

CO2 (input -ON/OFF)

transcript

protein

Metabolite

gene
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(N=125 participants) Gomez-Cabrero et al. BMC Systems Biology 2014, 8(Suppl 2):I1

Relevance of integration schemes



Metabolomics
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Reconstruction of 
gene regulatory 

networks

Genomic location
of regulatory

elements

Transcript profiling

Integrative approaches may give us broader insights

Chromatin 
proteome

Nucleosome
occupancy

Protein

DNA-binding and 
regulatory proteins

mRNADNA MetabolitesMetabolites

Fluxes and
metabolism

Winck, F.V., Paez Melo, D.O. and Gonzalez Barrios, A.F. (2013) Carbon acquisition and accumulation in microalgae Chlamydomonas: Insights from
"omics" approaches, J Proteomics, 94C, 207-218

Models of biological systems from 
systematic measurements 
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CO2

Chloroplast
Nucleus

Flagella

O2

Cellular responses to varying CO2 may reveal pathways  
for improving biomass accumulation

2CO2
H2O
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Higher CO2 concentration lead to enhanced biomass 
accumulation in microalgae

Cell growth curves 
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More carbon dioxide is not always better

Winck, F.V., Páez Melo, D.O., Riaño-Pachón, D.M., Caldana, C., Martins, M., González Barrios, A.F. (2015) Analysis of sensitive CO2 pathways and 
genes related to carbon uptake in Chlamydomonas reinhardtii through genomic scale modeling and experimental validation (Unpublished data)

75



76Chinnasamy et al.2009 Int. J. Mol. Sci.

Chlamydomonas under high availability of carbon 
dioxide suppress biomass accumulation
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No. Reaction Equation LB UB KEGG RxnNum Observation
2894 [c] : gdpmann + h2o + (2) nad --> gdpdm + (2) nadh + (2) h -1000 1000 R00880 Found by homology
2895 [c] : gdpdm + (2) nadh + (2) h --> gdpmann + h2o + (2) nad -1000 1000 R00880 Found by homology
2896 [c] : h + nadh + ru5p-D --> nad + dr5p -1000 1000 R01524 Found by homology
2897 [h] : h + nadh + ru5p-D --> nad + dr5p -1000 1000 R01524 Found by homology
2898 [c] : nad + dr5p --> h + nadh + ru5p-D -1000 1000 R01524 Found by homology
2899 [h] : nad + dr5p --> h + nadh + ru5p-D -1000 1000 R01524 Found by homology
2900 [c] : h + nadph + ru5p-D --> nadp + dr5p -1000 1000 R01525 Found by homology

Metabolic network models

Allison Yaguchi, 21:54, 3 November 2012

Winck, F.V., Páez Melo, D.O., Riaño-Pachón, D.M., Caldana, C., Martins, M., González Barrios, A.F. (2015) Analysis of sensitive CO2 pathways and genes 
related to carbon uptake and accumulation in Chlamydomonas reinhardtii through genomic scale modeling and experimental validation (submitted).
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Understanding biomass accumulation by integrating 
experimental data into metabolic network models

Experimental data
(total biomass)

Genome-scale network model

Modeling and simulations
on reconstructed

metabolic network

Modified from Mol.BioSyst., 2009, 5, 1889-1903.

Melo D., Moncada R.-P., Winck F., Gonzalez-Barrios A. (2014) In Silico Analysis for Biomass Synthesis under Different CO2 Levels for Chlamydomonas
reinhardtii Utilizing a Flux Balance Analysis Approach. In Castillo, L.F., et al. (eds), Advances in Computational Biology. Springer International
Publishing, pp. 279-285.
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Sensitive genes and reactions were identified based on
In silico simulations which integrated experimental data

Winck, F.V., Paez Melo, D.O. and Gonzalez Barrios, A.F. (2013) Carbon acquisition and accumulation in microalgae Chlamydomonas: Insights from
"omics" approaches, J Proteomics, 94C, 207-218

Total biomass



Detection of sensitive genes and pathways may indicate 
essential routes for biomass accumulation

Winck, F.V., Páez Melo, D.O., Riaño-Pachón, D.M., Caldana, C., Martins, M., González Barrios, A.F. (2015) Analysis of sensitive CO2 pathways and genes 
related to carbon uptake and accumulation in Chlamydomonas reinhardtii through genomic scale modeling and experimental validation (submitted).
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Biological processes Sensitive genes *

Transport, mitochondria
MITC14/ MITC28 / PTB8 / PTB7 / PRB1/ PRB12 / PTB4 /  PTB2 / 

CRv4_Au5.213.g4507.t1
Phenylalanine tyrosine 

and tryptophan AST4 / HIS5

TCA cycle/ CO2 fixation ACH1/ IDH3 / SDH1 / SDH2 / OGD1
Valine, Leucine  and 

isoleucine degradation
CRv4_Au5.s4.g11844.t1/ Crv4_Au5.s12.g3863.t1 / 

CRv4_Au5.s6.g13618.t1 / CRv4_Au5.s12.g3863.t1 / g1910.t1
Pyruvate metabolism; 

Glyoxylate metabolism
HYDA1 / MFDX / HYDA2 /  PFL1 / ACK2 / AACK1 / ACK1 / PAT1 / PAT2 / 

CRv4_Au5.s6.g13230.t1/ CRv4_Au5.s2.g9723.t1
Alanine and aspartate 

metabolism; Glycerine, Serine 
and Threonine AST3 / AST1

Carbon Fixation AAT1 / AAT2 / MME3 / MME6 / MDH5 / MME2
Glycolisis, 

Gluconeogenesis, Valine, 
Leucine and isoleucine 
degradation

DLDH1 / PDC2 / PDH2 / ALSS1 / ALSL1 / PYK1 / PYK5 / PHG1 / GAP3/ 
GAP1 / PGM2 / PGM5 / PGM1B / PGK1 / TPIC / FBA1 / FBA2 / PGI1 / GPM2

Transport, Extracellular NAR1.6 / NAR1.3 / NAR1.4 
Pentose Phosphate 

Pathway TAL1 / TRK1/ RPE1/ RPI1
Glycine, Serine and 

Threonine metabolism Crv4_Au5.s10.g124.t2 / THD1 / SHMT3

Transport, Chloroplast

AOC6 / AOC5 / AOT7 / DAT1 / OMT1 / AOT5 / FBB13 / NAR1.5 / NAR1.2 
/ NAR1.1 / AAA3 / AAA1 / CRv4_Au5.s14.g5515.t1 / 
CRv4_Au5.s15.g5921.t1 / CRv4_Au5.g14736.t1 / MOT20 / MIP1 / MIP2

Butanoate Metabolism CRv4_Au5.s7.g14479.t1 / CRv4_Au5.s16.g6952.t1

Oxidative Phosphorylation
NDA3 / NUO11 / NUO10 / NUO13 / NUO21 / NUO3 / NUO5 / NUO6 / 

NUO8 / NUO9 / IPY1 / IPY3
Propanoate Metabolism PFL1
Nitrogen Metabolism CGL77 / IBA57 / GCST
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Gene expression analysis of sensitive genes validated 
candidates 

Winck, F.V., Páez Melo, D.O., Riaño-Pachón, D.M., Caldana, C., Martins, M., González Barrios, A.F. (2015) Analysis of sensitive CO2 pathways and 
genes related to carbon uptake in Chlamydomonas reinhardtii through genomic scale modeling and experimental validation (Unpublished data)
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High carbon dioxide availability affected the metabolome

82
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T

P

M

Inferring correlation between OMICS data

T

P

M

Transcripts

Proteins

Metabolites

Correlation

Computationally-assigned relationship
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Bersanelli et al, 2016. DOI: 10.1186/s12859-015-0857-9

Methods and tools for integration of multi-omics data

Grey: network-free, non-bayesian
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